
3D PRINTED CLAY & OYSTER SHELL FOR ENHANCING MARINE BIODIVER

Presented By Holly Adams

[1] Coral Gardeners

OVERVIEUU

Key Words: Bioremediation | 3D Bioprinting | Biocalcification | Regenerative BioDesign | Conservation | Living Structures

Using digital fabrication technology and bio-fabrication techniques to design a 3d bio-printed coral reef structure for use in conservation which is formed from the calcium carbonate binding between a living microorganism and natural pollution filtering bio-materials.

[1] Coral Gardeners

WHAT

3D bio-printed coral reef using living materials and biomaterials to **enhance** the reef structure, enabling processes such as **biocalcification** and **bioremediation** to occur, pulling pollution from the marine environment.

This design provides a **more hospitable** living environment for marine life and allows for a **selfhealing living structure** which closely imitates coral reefs. The hope is to cultivate cyanobacteria or marine fungi that are **adapted to survive** in the harsh and changing conditions to create a stronger reef scaffold.

[1] <u>3D Printed Clay Tile Coral Reef</u>

The **rapid decline** of coral reefs has increased the necessity of exploring interdisciplinary methods for reef restoration. There is an urgency to invest in technology that can help reach **ecosystem-scale.** [1]

Current Problems with Restoration Techniques:

- difficulty replicating the **3D complexity** of coral habitats
- difficulty **scaling** them to larger areas
- **pollution** from toxic objects such as sunken ships or concrete

Coral Reefs:

are the **most vulnerable** ecosystem to climate change - declined **50%** since the **1950s**, **90%** of coral ecosystems will be severely degraded by **2050** [1],[5].

support 25% of marine life [2]

are a sink for approximately **29%** of all CO2 absorbed by the ocean [4]

provide food, coastal protection, and revenue for **millions** of people [3]

[1] <u>Emerging 3D technologies for future reformation of coral reefs</u> [2] <u>World Corals Are Bleaching</u>

4 Ocean Acidification

RESEARCH

Academic References

"EVALUATION OF THE EFFECTIVENESS OF 3D-PRINTED CORALS TO ATTRACT CORAL REEF FISH AT TAMARINDO REEF, **CULEBRA, PUERTO RICO"**

- fish were more abundant in corals with the highest levels of complexity.
- findings suggest that 3D-printed corals can serve as a complementary tool to improve the ecosystem function of degraded coral reefs.

"REEF REVOLUTION: HOW IMPLEMENTATION OF 3D PRINTING CAN PROMOTE SUSTAINABLE CORAL RESTORATION"

Example of successful 3D printed reefs:

• Archireef - Hong Kong, **95%** coral survival rate

Complexities of design:

- reefs need to be designed for the particular location, environment and organisms
- selection of **durable** and **strong** materials e.g clay

"ARTIFICIAL REEFS: WHAT

WORKS AND WHAT

DOESN'T"

Doesn't work:

- trash and toxic materials
- small unsecured structures

Does work:

- wrecks and steel structures
- concrete structures
- modular units
- mineral accretion devices

RESEARCH

Organisations

Current innovative methods for reef restoration include propagating coral polyps on frames and 3D printing; while traditional methods sunk objects such as ships or concrete blocks.

CORAL GARDENERS

Growing coral fragments on rope to revive ecosystems and providing live coral growth tracking information.

REEFCYCLE

use plant enzymes to mimic shell formation and create bio-cement. Resulting in marine-safe material that can be produced in situ without heat, energy, or resource depletion

REEF DESIGN LAB

3D printed reef structures made from eco-concrete, oyster shells or other recyled materials.

3d printing customisable clay reef structures, and empowering communities through science, art and education.

COASTRUCTION

3d printing using natural materials aiming for the lowest CO2 footprint possible. Ideally, local materials such as beach sand or recycled concrete.

WHERE

Artificial reefs are very location and ecosystem dependent. When designing a reef these factors should be considered:

- local marine ecosystems and biodiversity
- water depth, light levels and temperature
- hydrodynamics (waves, current and sedimentation)
- seafloor characteristics
- human and environmental impact

will use open access resources of downloadable 3D photogrammetry models of coral reefs to identify which part of the world I will study. Such as:

- The Hydro
- SketchFab

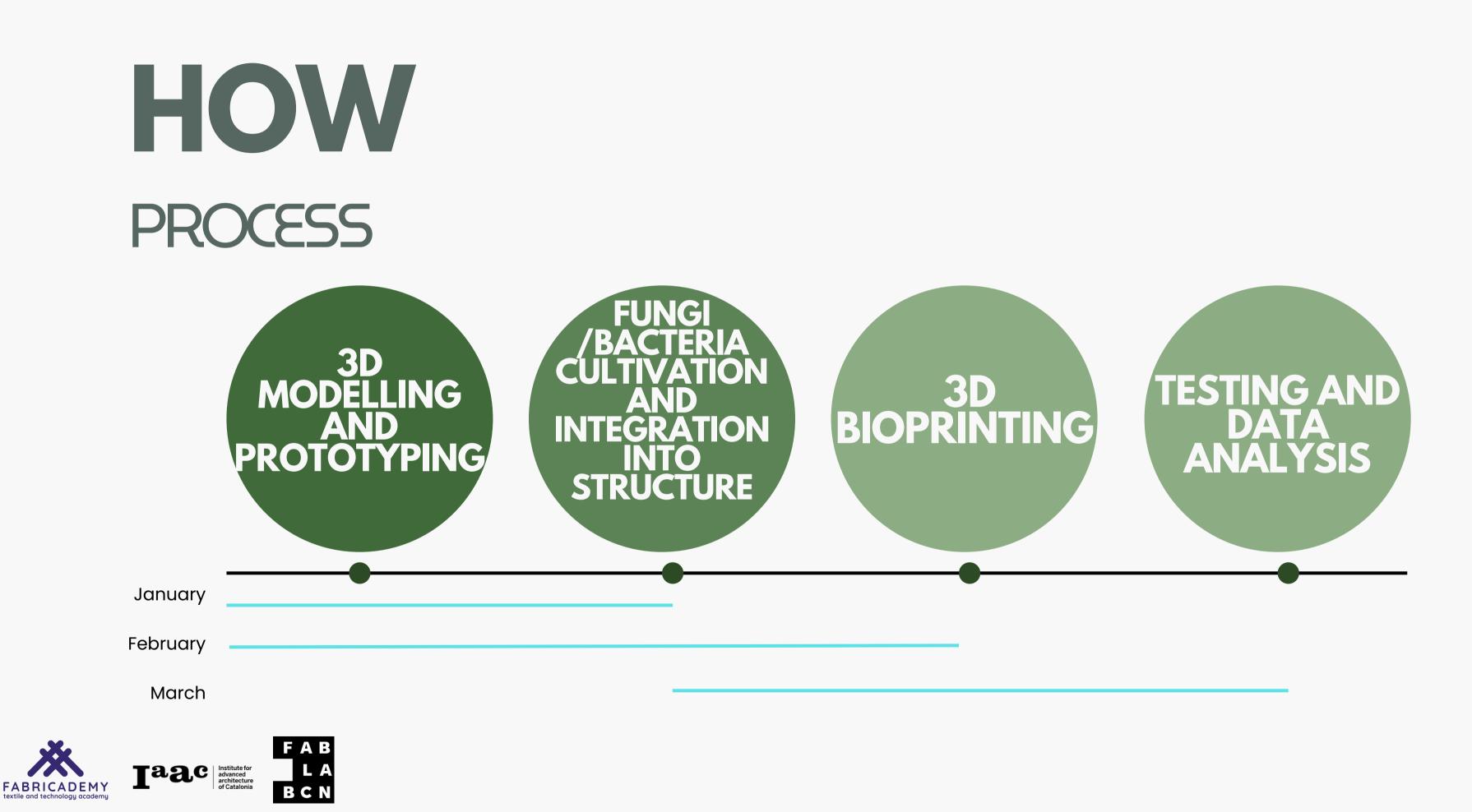
• VISEAON - Treibitz Marine Imaging Lab

HOW **RELEVANCE/NEED**

Problems with current/3D printed reefs methods:

- concrete based designs are still pollutants in the _____ marine environment and the industry is one of the largest producers of CO2 [1],[2]
- artificial reefs may not exist symbiotically with the marine life [1]
- molded reef structures have less complexity and don't mimic the natural environment well

The solution:

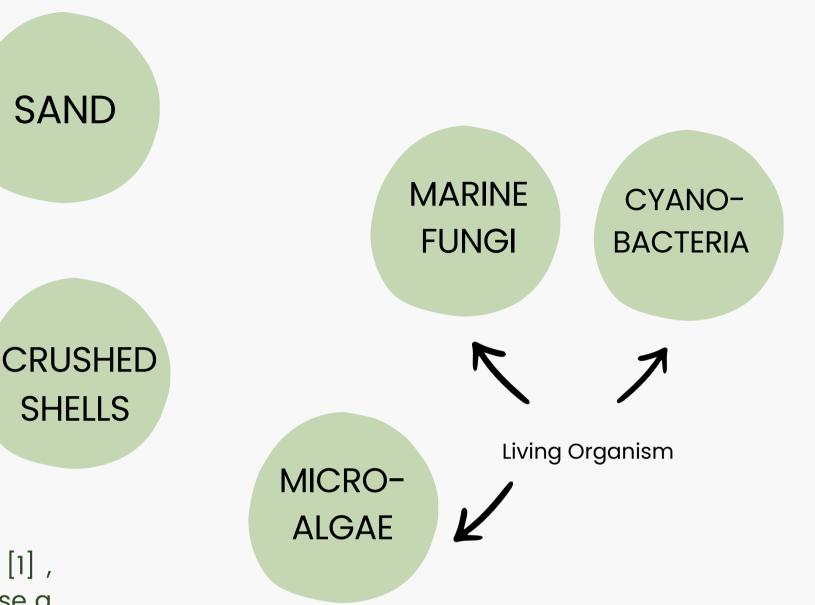

biomaterials won't release **microplastics** or pollutants into the water.

creating a living structure with **bioremediation** properties will allow for a **more hospitable** marine environment

3D printing allows for more **complex geometries** and surface areas allowing for more life to form on the structures.

[1] The Eco Friendly Alternatives to Ocean Concrete [2] Biocement Fabrication and Design Application for a Sustainable Urban Area

MATERIALS


Taking inspiration from design innovations such as **self-healing biobricks** [1], 3D printed architecture with **living materials** [2], and **bio-cement** I will choose a biomaterial and living organism to build a resilient structure which produces calcium carbonate and filters pollutants from the water.

The living material will either be chosen based on its ability to **survive in aquatic environments** or its ability to **produce calcium carbonate** (i.e it will be baked before being submerged)

Reinforcement with steel may be necessary depending on the location.

[1] Self Healing Bricks Eat CO2
[2] ClayCelium - IAAC
[3] BioCement Fabrication and Design Application

CONCLUSION

"3D bio-printed coral reef structure enhanced with living organisms and sustainable biomaterials with bioremediation and biomineralization properties for reef restoration and increased biodiversity"

Coral reefs are the most **vulnerable** ecosystem under threat from climate change and are **unable to adapt** fast enough to become resilient to the changing conditions.

Modern methods include propagating Traditional methods of restoration have proven unsustainable and polluting to coral fragments on frames, **3D printing** reef structures, and molding bio-cement into the marine environment. simple shapes.

There is little to none of research into 3D bio-printing a living coral structure using e.g clay and cyanobacteria which would promote biocalcification and bioremediation within the skeleton.

3D bio-printing will allow for more **complex geometries**, easier **customisation** with 3D modelling and photogrammetry, and **higher surface area** for larvae attachment

THANK YOU

hollyadams2804@gmail.com

www.linkedin.com/in/holly-adams-74a66a217

