

Open Source Hardware

Hacking CNC for block printing

Our Initial Design & Dye Inspiration

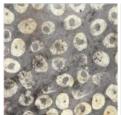
THE PATTERN

REPEATING PATTERNS

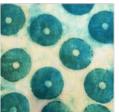
NEGATIVE SPACES

THE DYES

STAMPING ON REACTIVE NATURAL DIED FABRIC


[inspired by printing with bleach]

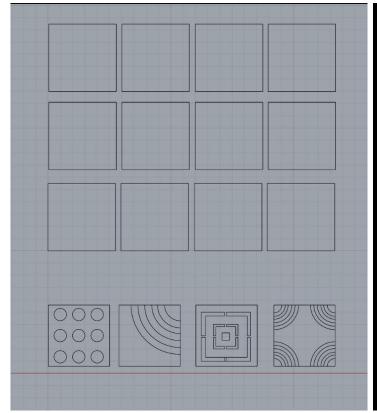
- * Iron reactive dye
- pH reactive
- mordanted fabric with tannins
- stamped with iron = black

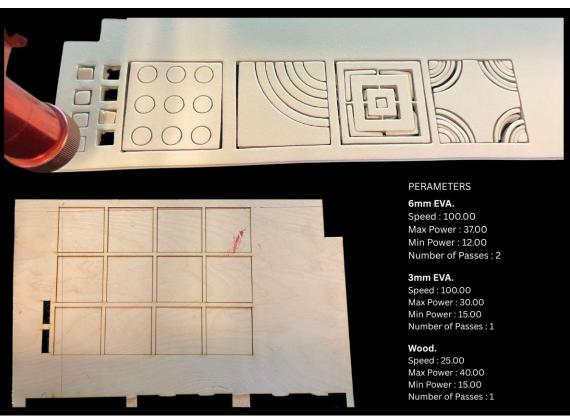


SOY RESIST WAX

NATURAL DYE

NATURAL DYE x BLEACH





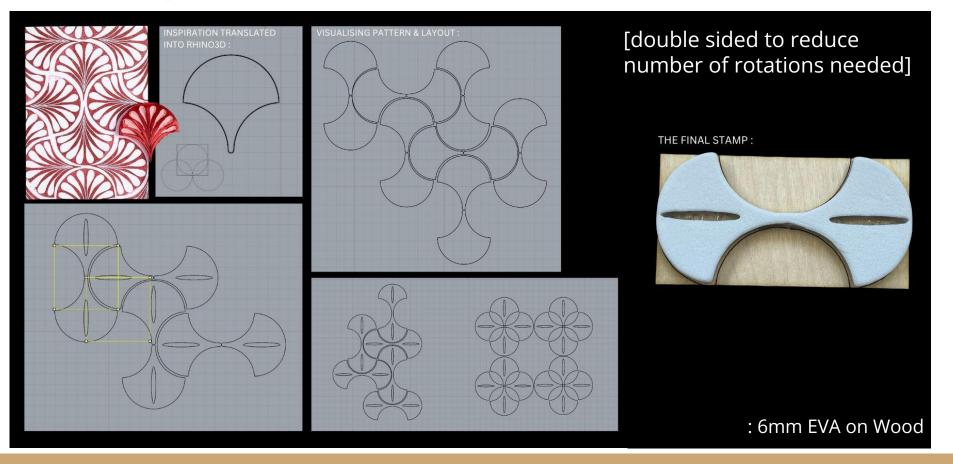
e.g. RED CABBAGE x LEMON JUICE [pink] or x BAKING SODA [blue]

Prototyping the Stamps


: Laser Cutting EVA and Wood in a range of patterns

Prototyping the Stamps

: Experimenting with the different thicknesses and quality of stamps.



6 mm EVA worked best due to thickness

Preparing the Final Stamp

: working with Rhino to make a precise design & visualise layout.

Fabric preparation

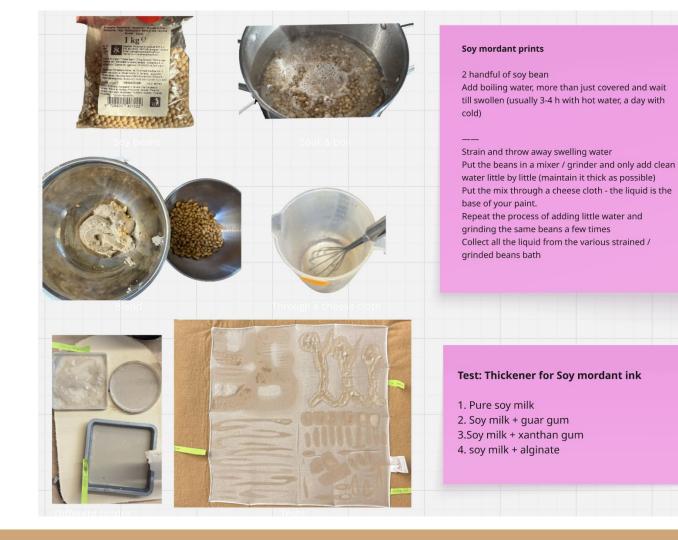
Preaparing the fabric:

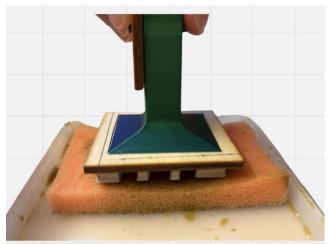
- 1. Scouring
- 2. Premordanting
 12% oak galls of WOF
 simmer & stirr for 2 hours
- 3. Mordanting
 12% alum + 1,5% soda of WOF
 simmer & stirr for 2 hours

Ink Recipes

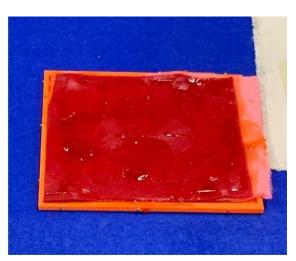
BoM of making the inks & dyes

Title	Quantity	Notes	Cost	Link
Coreopsis	Handful	In a concentrated bath (200ml), get a handful of coreopsis allow to cook for 40 minutes at 60 - 80 degrees.	€0, Foraged from previous years.	<u>Tuinflora</u>
Cochineal	20 grams	Grind up cochineal using a pestle and mortar. Dilute with some boiling water (just a few drops). Sieve for smoothness.	€3.45/10g	Classicfabrics
Weld	15 grams	To make a concentrated bath just add a little bit of boiling water.	€16/50g	Green ingredients
Alginate	20 grams	12 grams of unique agar, 20 grams of glycerine, 400 ml water & blend.	€22	Unique Agar
Iron	a pinch		€7/500g	<u>Laboratorium discounter</u>
Safflower	8 grams (remaining lake pigment)			12 Taste
Soy beans	2 handfuls (30 grams)	2 handfuls in boiling water for 2-3 hours. Blended up. Adding clean water, keeping it thick. Sieving through a cheesecloth.	€2/500g	Bionoot
Xanthan Gum	2% per 100ml	Add to boiling water and mix well.	€5/100g	Holland & Barret
Guar Gum	2% per 100ml	Add to boiling water and mix well.	€5/50g	<u>Hekserij</u>
СМС	2% per 100ml	Add to boiling water and mix well.	€12/500g	<u>Labshop</u>
Citric acid	5–10 g	Add to boiling water and mix well.	€6/1kg	Natuur product
Alum	12% alum	Add to boiling water and mix well.	€10/1kg	Deonlinedrogist

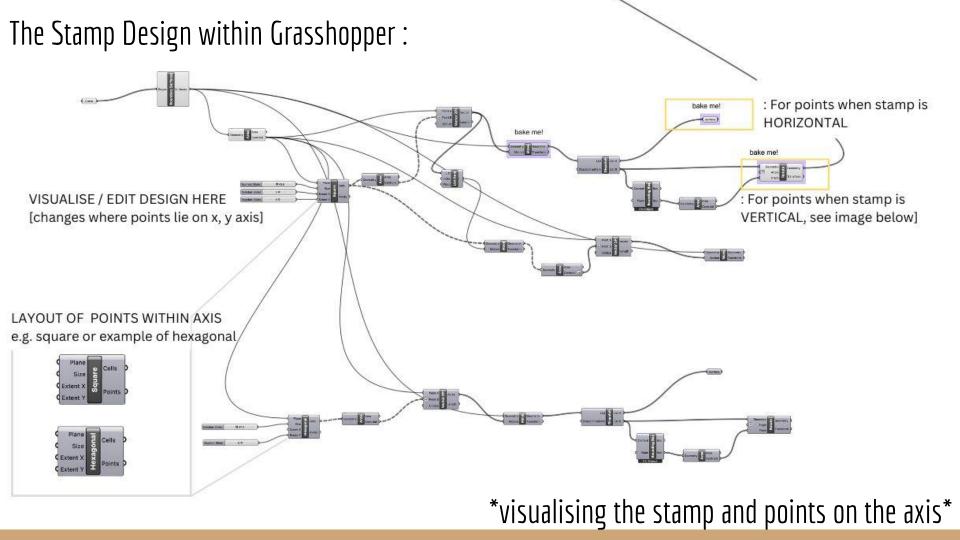

orna



on specialist and a line


Soy mordant prints

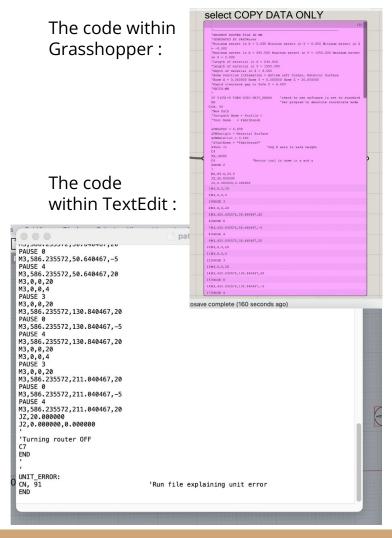
Ink Pad



sponge felt

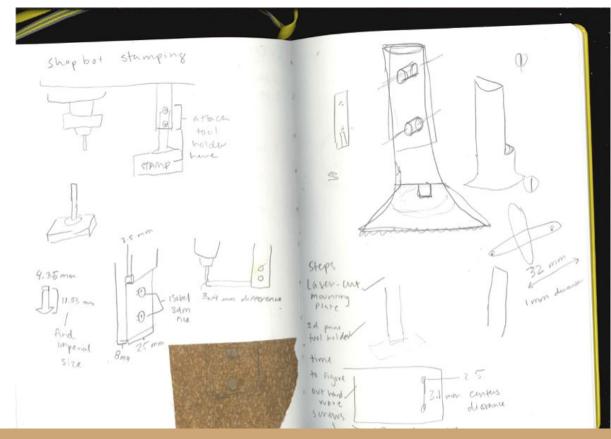
From Grasshopper to a ShopBot dye comainer central location code: THE WHOLE CODE right click on the panel, select COPY DATA ONLY start code main body. end code CODE FOR SHOPBOT [copy data only] : EDIT Z AXIS LEVELS HERE [e.g. pressure of stamp] Above container Dipping level : Connects code for shopbot to points of design. Z Clearance Above Fabric Stamping level

Getting the code from Grasshopper to ShopBot:

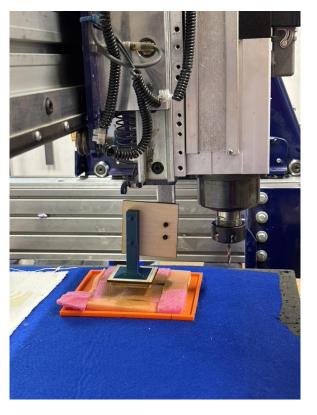

STEP-BY-STEP.

[once the Shopbot code and design is ready]

 Connect the points within the design to the Area and therefore the rest of the code for the Shopbot.


[do this twice if there are different points for rotated designs e.g. pattern5A.sbp was horizontal and pattern5B.sbp was vertical]

- BAKE [the correct axis points]
- [take note of the setting you used or export high-res image of grasshopper]
- Then within large pink, panel, right click and 'Copy Data Only'
- Open TextEdit
- Paste...
- Format... 'Make Plain Text'
- Save.
- [Name] .sbp
- Untick ☐ If no extension is provided, use ".txt".
- Save onto USB.

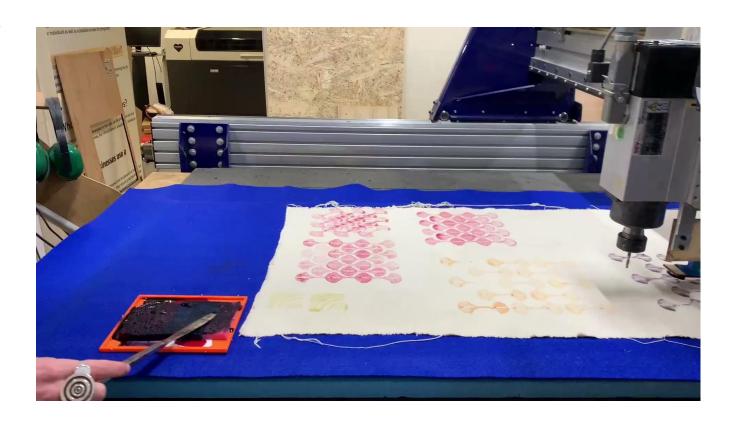


3D Printed Tool Parts: Sketch & Measure

- Attach the stamp tool where the "skirt" is usually attached
- Wide pyramid shape can distribute pressure evenly throughout the stamp
- Obtain measurements for the screw holes from Isobel & Carolina's 2024 documentation

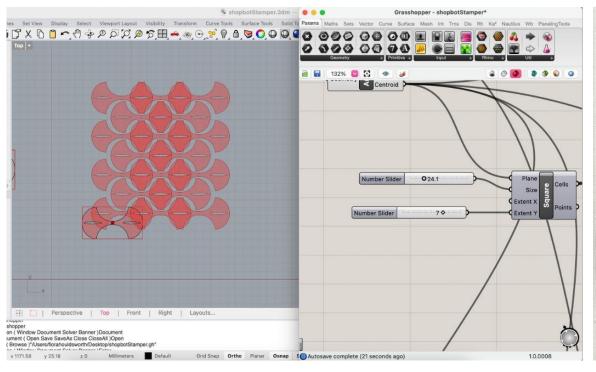
3D Printed Tool Parts: First attempt & Ink pad

- Static, no electronics involved
- Not centered with the CNC tool
- Low infill and thin base led to breaking under pressure
- Unnecessary laser cut mounting plate
- Ink pad is large and low-profile to accommodate stamp sizes and clearance height


3D Printed Tool Parts: Second iteration

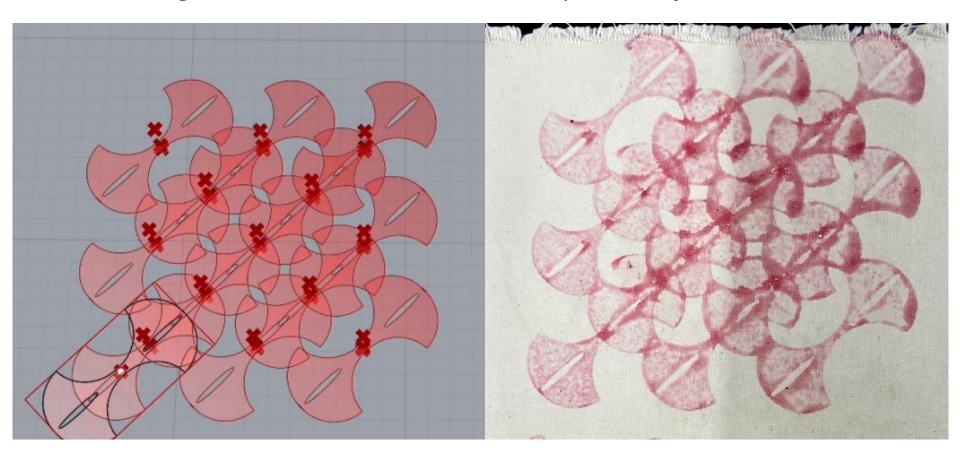
- Static, no electronics involved
- Mounts directly to machine
- Centered with the CNC tool
- Higher infill % and thicker base to prevent cracking

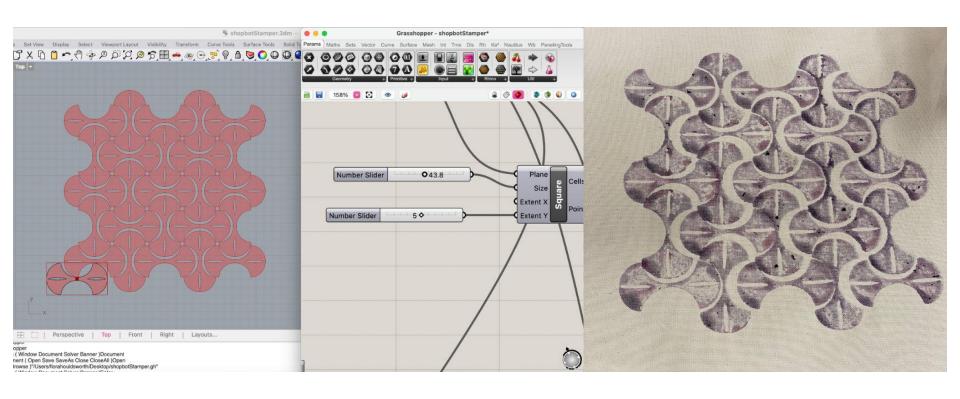
<u>Link</u>


Stamping

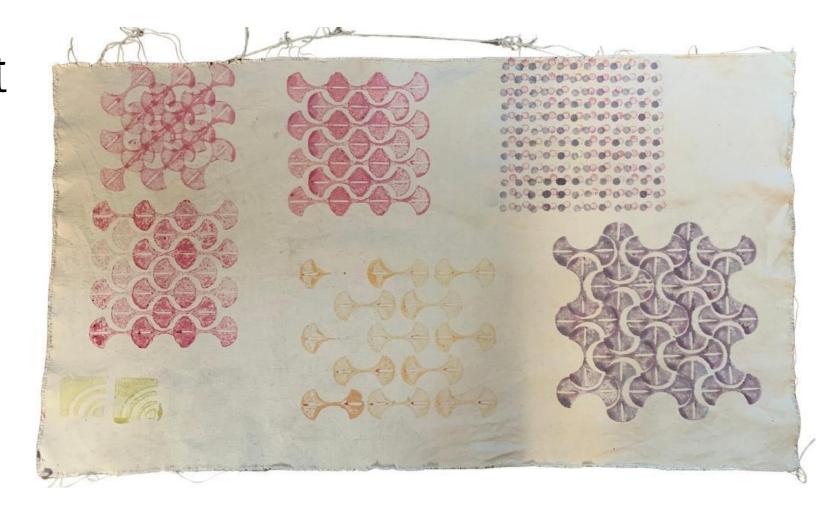
<u>Link</u> to Vimeo

Printing Experiments [from Grasshopper to Textile]


: Cochineal, Alginate & Water


: Cochineal, Alginate & Water

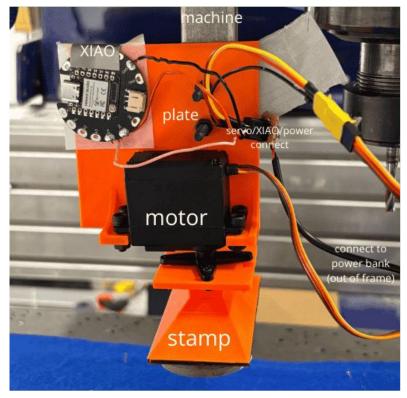
*stamp manually turned 45° *

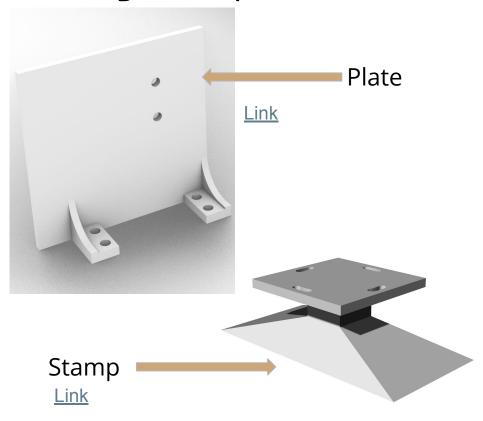


: IRON, Cochineal, Alginate & Water

*stamp manually turned 90° *

Result




3D Printed Tool Parts: Rotating Stamper

- Must include space for servo motor and electronics
- 2 3D-printed parts: the motor holder and the stamp holder
- Center the motor attachment with machine mount

3D Printed Tool Parts: Rotating Stamper

Rotating Stamper Coding

- Our idea was to create a pattern tool that could rotate. To achieve this, we planned to attach a servo motor to the stamper and use a button to change its rotation whenever needed.
- We used two ESP32 boards. One board, attached to the stamper, controlled the servo motor, while the second board was connected to the button input and sent a signal to the first board each time the button was pressed.

Tools

- ♦ ESP32S3
- ♦ ESP32C3
- ❖ FabriXiao
- Wires
- Jumper wires
- Prototyping Board
- Power bank
- USB-C cable
- Servo Motor
- ❖ Button
- BreadBoard

ESPNOW Protocol

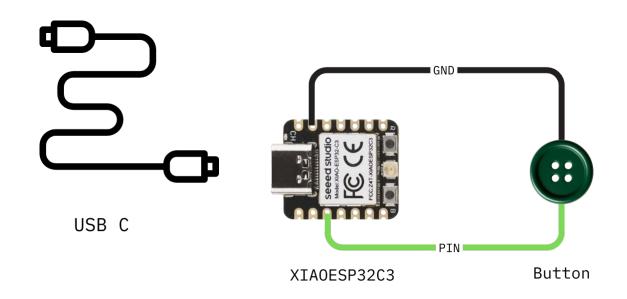
ESP-NOW is a wireless communication protocol developed by Espressif, the company behind the ESP32 microcontroller MCU. <u>Arduino Tutorials</u>

Characteristics

- **Wireless**: devices can send data to each other without the time-consuming process of pairing or joining a network.
- **Low Latency**: The data transmission is nearly instant.
- **Low Power Consumption**: since it is not connected to the internet, the ESP can go to sleep, wake up to send a message and go to sleep again
- **Range**: 220 m ca
- ❖ Optional Encryption: ESP-NOW supports AES-128 encryption, so your data isn't just flying around unprotected
- Supports Many Peers: You can communicate with up to 20 peers (unencrypted) or 10 peers (encrypted) from a single ESP device.
- Can Work Alongside WiFi: So, one device can collect data via ESP-NOW from a bunch of other ESPs, then upload it to the internet over Wi-Fi

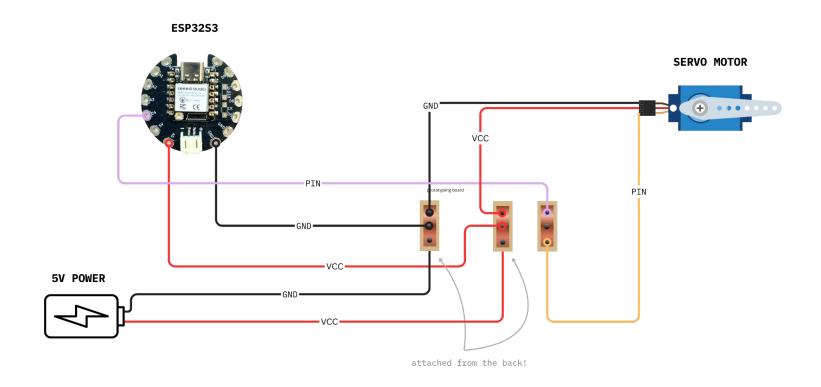
Architecture

- Any ESP can be a client or a server
- Peer-to-peer Communication: you can have one ESP32 sending data to another, one device sending data to multiple receivers or several ESPs all sending data to a central node
- MAC address: Every ESP board has a unique MAC address, and ESP-NOW uses these to route messages.
- Code to upload to find the MAC —————
 address


Check the serial monitor, it will show something like:

80:B5:4E:C3:6A:64

```
Rui Santos & Sara Santos - Random Nerd Tutorials
Complete project details at
https://RandomNerdTutorials.com/get-change-esp32-esp8266-mac-address-arduino/
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files .
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software .
*/#include <WiFi.h>#include <esp wifi.h>void readMacAddress () {uint8 t
baseMac[6];esp err t ret = esp wifi get mac (WIFI IF STA, baseMac);if (ret ==
ESP OK) {
baseMac[0], baseMac[1], baseMac[2],
baseMac[3], baseMac[4], baseMac[5]);} else {
Serial.println("Failed to read MAC address");}}void setup(){
Serial.begin (115200);
WiFi.mode (WIFI STA);
WiFi.STA.begin();
Serial.print("[DEFAULT] ESP32 Board MAC Address: " );readMacAddress();}void
loop(){}
```


Diagram Client

ESP32C3 (client) is connected to the button and give the input to the ESP32S3 (server)

Diagram Server

ESP32S3 (server) is connected to servo motor and attached to the head tool. It receives input from the ESP32S3 (server)

Client Code

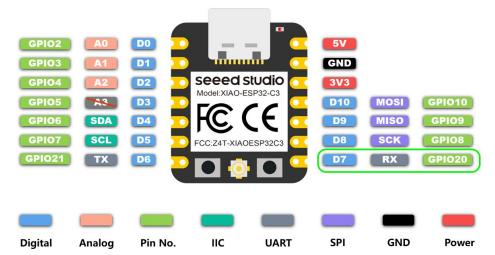
```
#include <esp now.h>
#include <WiFi.h>
#define BUTTON PIN 20 // Change to the pin your button is connected to
uint8 t receiverMac[] = {0x10, 0x20, 0xba, 0x76, 0xe1, 0xec}; // Replace
with your S3 MAC
typedef struct {
 int angle;
} Message;
Message outgoingData
bool lastBtn = HIGH;
int currentAngle = 0;
void onSent(const wifi tx info t *info, esp now send status t status {
 Serial.print("Send status: ");
 Serial.println(status == ESP NOW SEND SUCCESS? "OK" : "FAIL");
void setup() {
  Serial.begin(115200);
 pinMode(BUTTON PIN, INPUT PULLUP); // use internal pull-up resistor
  WiFi.mode(WIFI STA);
  if (esp now init() != ESP OK) {
    Serial.println("ESP-NOW init failed");
    return:
  esp now register send cb(onSent);
```

continues here

```
esp now peer info t peer= {};
 memcpy(peer.peer addr, receiverMac, 6);
  peer.channel = 0;
  peer.encrypt = false;
  if (esp now add peer(&peer) != ESP OK) {
    Serial.println("Failed to add peer");
   return:
 Serial.println("C3 Sender ready");
void loop() {
 bool btn = digitalRead(BUTTON PIN);
  // Detect button press (falling edge)
 if (btn == LOW && lastBtn == HIGH) {
    delay(50); // simple debounce
   // Toggle angle
    currentAngle = (currentAngle == 0) ? 90 : 0;
    outgoingData angle = currentAngle;
    Serial.print("Button pressed → sending angle: ");
    Serial.println(currentAngle);
    esp now send(receiverMac, (uint8 t*) &outgoingData,
sizeof(outgoingData));
    delay(1000); // to avoid double measurements
  lastBtn = btn;
```

If the **ESP32S3** is on you should see this in your **Serial Monitor**

```
17:47:33.630 -> Send status: OK

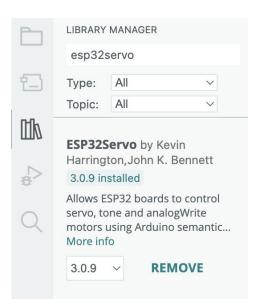

17:47:34.932 -> Button pressed → sending angle:

90

17:47:34.932 -> Send status: OK

17:47:46.188 -> Button pressed → sending angle: 0

17:47:46.188 -> Send status: OK
```



In this part of the code where the button pin is defined, I used the actual GPIO number instead of digitalPin 7. The button wasn't responding when I set BUTTON_PIN to 7, but it started working correctly once I used the corresponding GPIO number for the ESP32-C3.

*A3(GPIO5) - Uses ADC2, which may become inoperative due to false sampling signals. For reliable analog reads, use ADC1 instead. Refer to the ESP32-C3 datasheet.

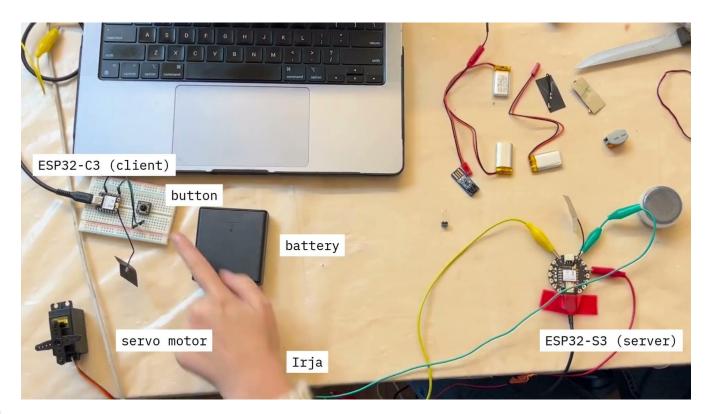
Server Code

```
#include <esp now.h>
#include <WiFi.h>
#include <ESP32Servo.h>
Servo servo;
int currentAngle = 0;
typedef struct {
 int angle;
} Message;
Message incomingData;
void on Receive (const esp now recv info t
*info, const uint8 t *data, int len) {
 memcpy (&incomingData, data,
sizeof(incomingData));
  Serial.print("Received angle: ");
  Serial.println(incomingData.angle);
  servo.write(incomingData.angle);
  currentAngle = incomingData.angle;
```

```
void setup() {
         Serial.begin (115200);
         servo.attach(5); // D5 pin
         servo.write(0);
         WiFi.mode (WIFI STA);
         if (esp now init() != ESP OK) {
           Serial.println("ESP-NOW init failed");
           return;
continues here
         esp now register recv cb (onReceive);
         Serial.println("S3 Receiver ready");
      void loop() {}
```


You need to include the **ESP32Servo library**, which needs to be installed. You can do so by navigating:

Library Manager > Type "ESP32Servo" > Install



Arduino sketches: Client and Server

BoM - Rotating Stamper

Duly - Koraring Stamper						
Title	Quantity	Notes	Cost	Link		
ESP32S3	1		€8.82	<u>kiwielectronics</u>		
ESP32C3	1		€8.99	bit and parts		
Fabrixiao	1					
Servo MG995	1	10kg 180 graden	€6.99	<u>benselectronics</u>		
Wires		with different colours it is easier to distinguish the connections	€1.95	bits and parts		
Jumper wires			€0.50	<u>tinytronics</u>		
Switch	1		€0.15	<u>tinytronics</u>		
Power bank	1		€29.99	<u>mediamarkt</u>		
USB C cable	1		€6.79	alleskabels		

Testing

Link <u>Vimeo</u>

Powering

The ESP32S3 and the Servo MG995 need to be powered

ESP32-S3

Voltage: 5V (USB) or 3.3V (input)

Current: ~150–500 mA

MG995 Servo

Voltage: 4.8V – 7.2V

Current:

o Idle: ~10 mA

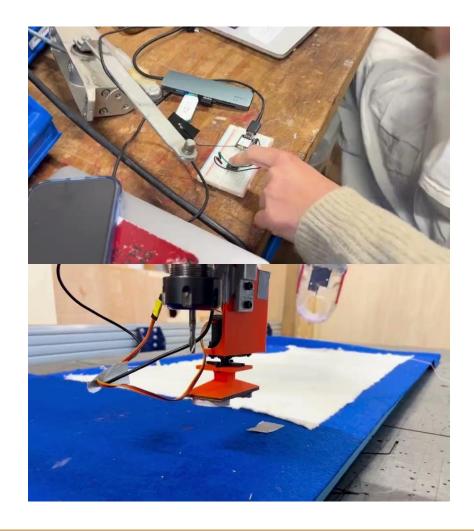
Moving (no load): ~500–900 mA

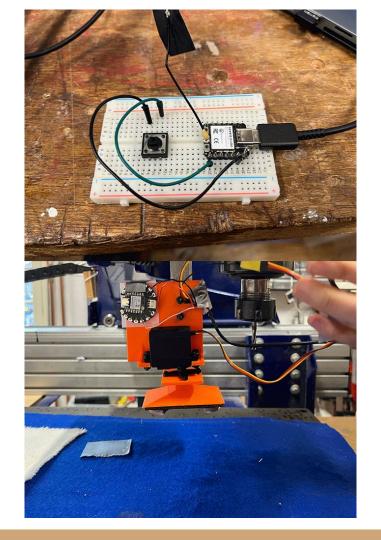
Stall (under load): 1.5–2.5 A spikes

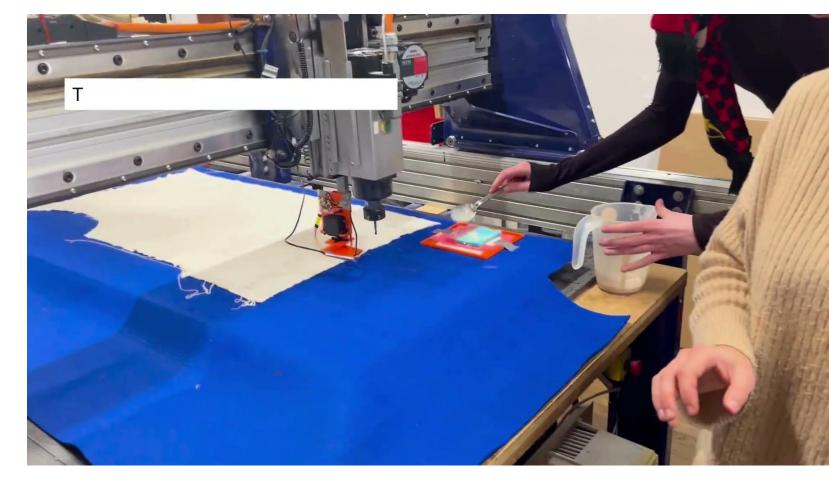
This means that the servo has current spikes, making it quite unstable

Troubleshooting

Ideally, we could have added a **capacitor** to store electrical energy and provide extra current during servo spikes.


However, we couldn't find a capacitor in the lab that was suitable for our setup.


We tested a 6V power supply (for the servo) and a 3.7V battery (for the board) but the board was not turning on


We tested a 6V power supply connected to both the board and the servo, but we fried the board

We tried using a LDO regulator with a 9V battery, but we noticed not enough current was flowing to the board

We ended up powering both the servo and battery with a power bank

