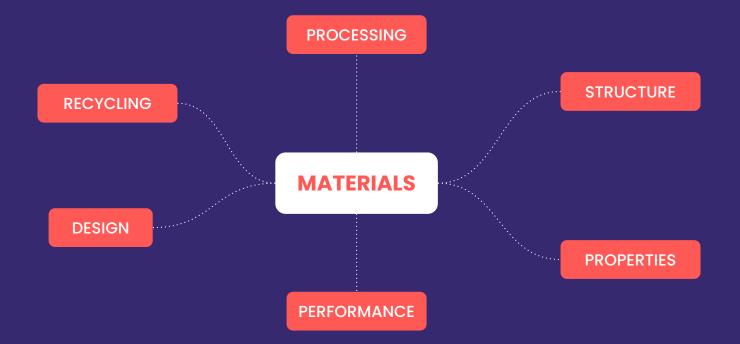


3 BIOPRINTING TUTORIAL

PETRA GARAJOVÁ

Fabricademy | Textile & Technology Academy 2022

FABRICADEMY 2022-23


TUTORIALS

FABTEXTILES EXTRUDED KOMBUCHA, 2021/22

Fabricademy | 3D Bioprinting Tutorial

MATERIAL PRACTICE

MATERIALITY RESEARCH GROUP 3D PRINTING BIOPLASTICS

FAB LAB BARCELONA3D PRINTED POTATOES, 2020

LAB Iaac

BLAST STUDIO UK 3D PRINTED MYCELIUM & CLAY

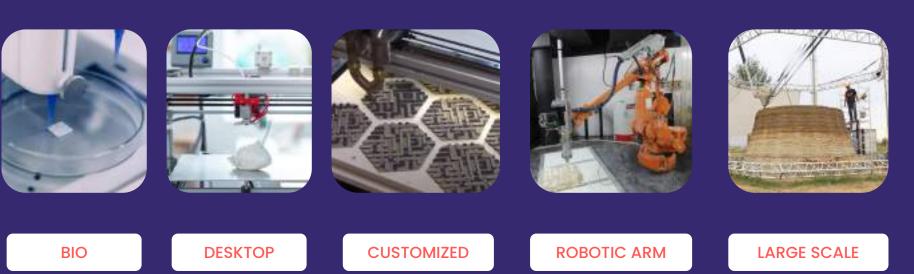
JUSTIN SHEINBERG IAAC MYCELIUM & RECYCLED CLAY

Training of Weichdale Agency

- the second NAMES ADDRESS OF

-

and the deep during any local plate the state



ILAENA MARIA NAPIER - IAAC AMBER LAMINARIA, 2020/21

Fabricademy | 3D Bioprinting Tutorial

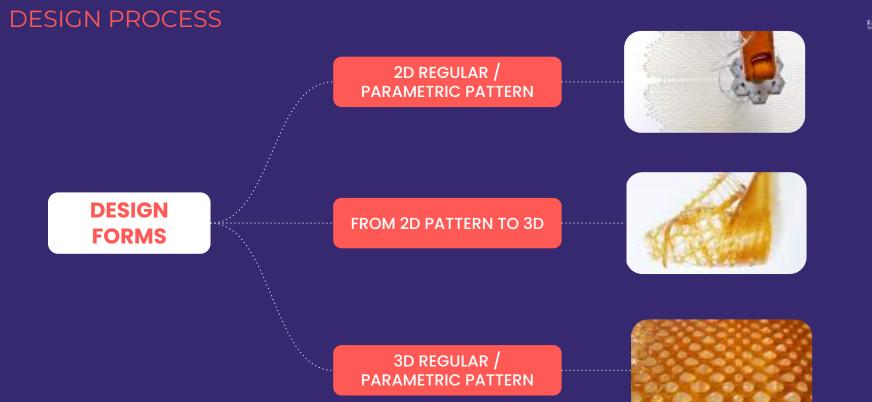
Taac

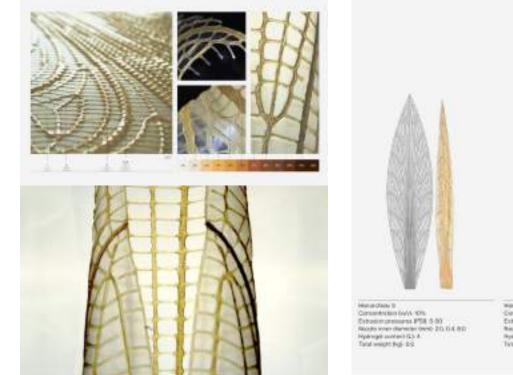
ADDITIVE MANUFACTURING **SCALE**

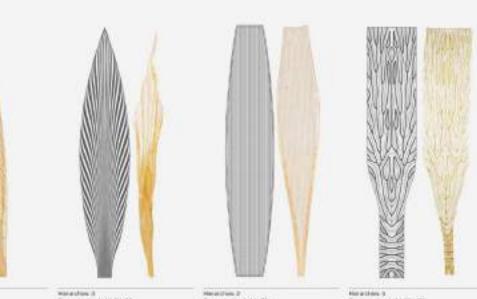
ADDITIVE MANUFACTURING

MATERIALS

3D PRINTERS







DESIGN PROCESS - AGUAHOJA

Constitution (arts (Pa, IPa Exit allow pressures PEB-40-00 Reside over thereafter (Inve) 6-1 Rystroger context (2)-1 Total could (Eq. 27

Head Units 2 Consolitation (arXiv: 076) Consolitation (arXiv: 076) 30-45 Expansion (Figure arXiv: 076) 07.30 Hydroget context (3) 8 Data (weight logic line) Catal (weight logic line)

Haracteries & Concentration (while Jin, 19%, Drivenin anospenie (PSE-3-54) Metade rives character (and 10, 10, Metades secret (32, 10) Total secret (32, 10)

RECIPES

Colorants: Charcoal powder Mica Turmeric Cinnamon Spirulina

RECIPES - MATERIOM LIBRARY

Oyster Shells & Sodium Alginate composite by Marcos Georgiu

Live pomace & Sodium Alginate composite by Serdar Asut

Egg Shells & Xantham gum composite by Ana Otero

RECIPES

Description: a cellulose gum is used in food as a viscosity modifier or thickener, and to stabilize emulsions in various products including ice cream. It is synthesized by the alkali-catalyzed reaction of cellulose with chloroacetic acid. It is also a constituent of many non-food products. Knitted fabric made of cellulose (cotton or viscose rayon) may be converted into CMC and used in various medical applications. Common use: It is used primarily because it has high viscosity, is nontoxic, and is generally considered to be hypoallergenic as the major source fiber is either softwood pulp or cotton linter.

Description: a naturally occurring anionic polymer typically obtained from brown seaweed due to its biocompatibility, low toxicity, relatively low cost, although the addition of divalent Ca2+ (calcium ions) results in mild gelation. It's a water-insoluble, gelatinous, cream-coloured substance that can be created through the addition of aqueous calcium chloride to aqueous sodium alginate.

Common use: in biology, but primarily known for its healing properties due to the compound's ability to encase enzymes in order to simulate new plant tissue.

SODIUM ALGINATE & CELLULOSE

RECIPE-01

Material name	amount g / ml
Sodium alginate	4 g
CMC	5 g
Water	200 ml
Glycerol	1 tbsp
Filler	5 spoons

Tools Hand blender Measuring cup

RECIPES

Description: is a galactomannan polysaccharide extracted from guar beans that has thickening and stabilizing properties useful in food, feed, and industrial applications. The guar seeds are mechanically dehusked, hydrated, milled and screened according to application. it has almost eight times the water-thickening ability of other agents (cornstarch) and only a small quantity is needed for producing sufficient viscosity. In addition to guar gum's effects on viscosity, its high ability to flow, or deform.

Common use: One use of guar gum is a thickening agent in foods and medicines for humans and animals.

GUAR GUM

RECIPE-02

Material name	amount g / ml
Guar gum	8 g
Water	200 ml
Filler	7 spoons

Tools Hand blender Digital scale

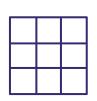
HANDPRINTING

SAUCE BOTTLE

SYRINGE

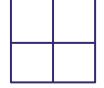
BAKERY TOOLS

HANDPRINTING


MARCOS GEORGIOU BIOGUN

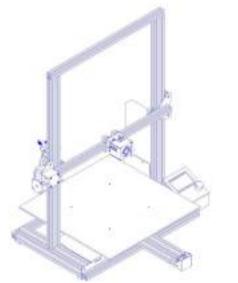
HANDPRINTING

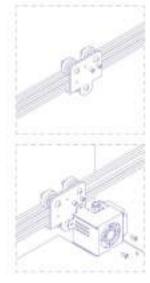
Layers: 6 Nozzle: 2 mm

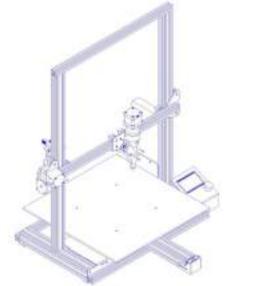

b. *Prototype_02* Layer: 3 Nozzle: 3 mm

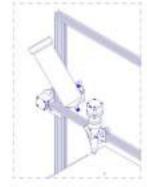
c. *Prototype_03* Layers: 4 Nozzle: 3 mm

d. *Prototype_04* Layers: 3 Nozzle: 3 mm


PASTE PRINTING KIT

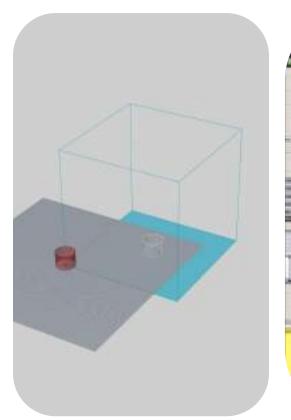


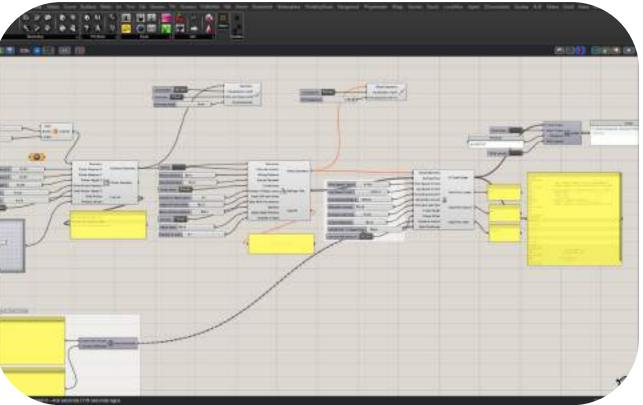


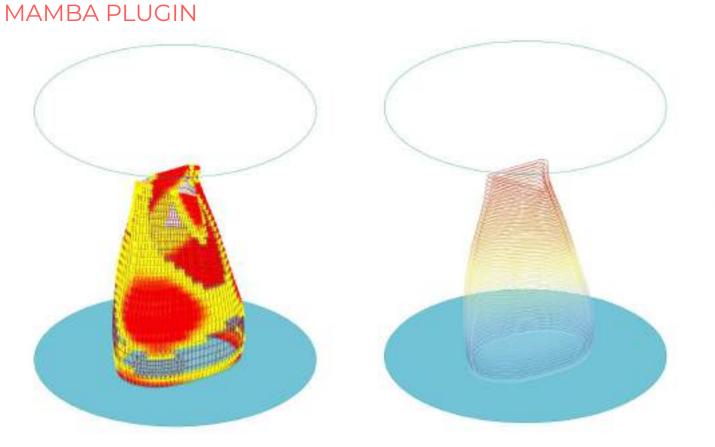

PRINTER MODIFICATION

CUSTOMIZED

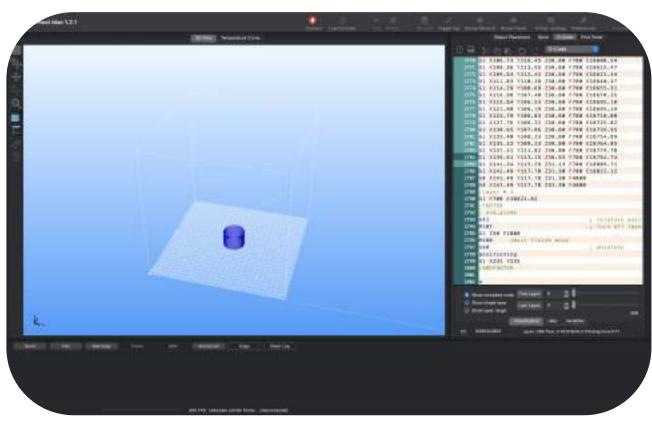
DESKTOP


EXTRUDER ASSEMBLY


MACHINE ASSEMBLY



G-CODE - GRASSHOPPER

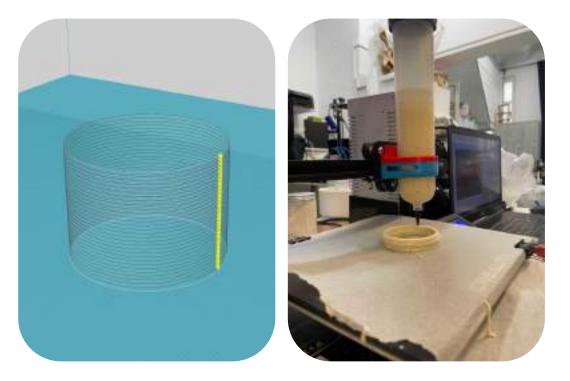


MAMBA plugin Food4rhino

G-CODE - REPETIER

Repetier-Host

SEND TO PRINT


MACHINE SET UP

3D PRINTING SETTINGS & DOCUMENTATION

RECIPE_01	KERATIN TAPIOCA STARCH
Layer height	1.2 mm
Layers	5
Nozzle	2 mm
Printing speed	250 mm/s
Printing time	2 m 45 s
Pressure / Bars	3 bars
Drying	30 h
Size	70 x 70 mm

PASTE 3D-PRINTING

SODIUM ALGINATE & CELLULOSE

RECIPE-01

Sodium alginate	4 g
СМС	5 g
Water	200 ml
Glycerol	1 tbsp
Filler	5 spoons
Tools	
Hand blender	
Measuring cup	

GUAR GUM

RECIPE-02

Guar gum	8 g	
Water	200 ml	
Filler	7 spoons	

Tools Hand blender Measuring cup

THANK YOU!

Petra Garajová

Material Research

petra@fablabbcn.org

Eduardo Chamorro

Paste Printing Kit

eduardo.chamorro@iaac.net

Santi Fuentemilla

Paste Printing Kit

santi@fablabbcn.org

